Midterm exam Linear Algebra II Thursday 07/03/2024, 18:30-20:30

$1 \quad(9=1+2+2+4 \mathrm{pts})$

subspaces

Let \mathcal{V} be a vector space over \mathbb{F}. Consider two subspaces \mathcal{U} and \mathcal{W} of \mathcal{V}.
(a) Give an example to show that $\mathcal{U} \cup \mathcal{W}$ is in general not a subspace of \mathcal{V}.
(b) Prove that $\mathcal{U} \cup \mathcal{W}$ is a subspace of \mathcal{V} if either $\mathcal{U} \subseteq \mathcal{W}$ or $\mathcal{W} \subseteq \mathcal{U}$.
(c) Now assume that $\mathcal{U} \cup \mathcal{W}$ is a subspace of \mathcal{V}. Suppose that there exists a vector $u \in \mathcal{U}$ such that $u \notin \mathcal{W}$. Show that for any vector $w \in \mathcal{W}$, either $u+w \in \mathcal{U}$ or $u+w \in \mathcal{W}$.
(d) Prove that if $\mathcal{U} \cup \mathcal{W}$ is a subspace of \mathcal{V} then either $\mathcal{U} \subseteq \mathcal{W}$ or $\mathcal{W} \subseteq \mathcal{U}$.
$2 \quad(9=3+3+3 \mathrm{pts})$
linear operators

Consider the vector space P_{2} of real polynomials of degree ≤ 2.
(a) Define the function $T: P_{2} \rightarrow P_{2}$ by

$$
(T(p))(x):=x^{2} p\left(\frac{1}{x}\right)+p^{\prime \prime}(x) .
$$

Prove that T is a linear operator.
(b) Find a matrix representation of T with respect to the basis $\left(1,1+x, 1-2 x+x^{2}\right)$.
(c) Are the following maps linear operators on P_{2} ? Motivate your answers.

- $(R(p))(x):=x p\left(\frac{1}{x}\right)+p^{\prime \prime}(x)$.
- $(S(p))(x):=p\left(p^{\prime \prime}(x)\right)$.

Consider the vector space V over \mathbb{C} consisting of all functions $f: \mathbb{Z}_{\geq 1} \rightarrow \mathbb{C}$. Here the sum of $f, g \in V$ is the function $f+g$ defined by $(f+g)(n)=f(n)+g(n)$, for all $n \in \mathbb{Z}_{\geq 1}$ and scalar multiplication (for $f \in V$ and $\lambda \in \mathbb{C}$) defined as $(\lambda f)(n)=\lambda f(n)$.

This exercise deals with the \mathbb{C}-subspace $W \subset V$ given by

$$
W:=\left\{f \in V: f(n+3)=f(n+2)-f(n+1)+f(n) \text { for all } n \in \mathbb{Z}_{\geq 1}\right\}
$$

(a) Show that the function h : $\mathbb{Z}_{\geq 1} \rightarrow \mathbb{C}$ given by $h(n)=1$ for any $n \geq 1$, is an element of W.
(b) Explain why the three functions $n \mapsto 1$ and $n \mapsto i^{n}$ and $n \mapsto(-i)^{n}$ form a basis β for W over \mathbb{C}.
(c) The linear map $S: W \rightarrow W$ is defined as follows: for any $f \in W$ we define $S(f)$ to be the following function: it sends any $n \in \mathbb{Z}_{\geq 1}$ to $f(n+1)$. Compute ${ }_{\beta}[S]_{\beta}$, with β as in (b).
(d) Take $g \in W$ defined as $g(n)= \begin{cases}1 & \text { if } 4 \text { divides } n \text { and if } 4 \text { divides } n+1, \\ 0 & \text { otherwise. }\end{cases}$ Then another basis for W is $\gamma=\{g, S(g), S(S(g))\}$. What is ${ }_{\beta}\left[i d_{W}\right]_{\gamma}$? Here S is the map from part (c) and β is the basis given in (b).
$4 \quad(9=2+2+2+3 \mathrm{pts})$

dimension, norms and inner products

In this exercise, V is an inner product space over \mathbb{R}, with inner product of vectors $v, w \in V$ written as $\langle v, w\rangle$. We assume $0 \neq \operatorname{dim} V=n<\infty$ and we take a basis $\left\{v_{1}, \ldots v_{n}\right\}$ for V over \mathbb{R}. Let $T: V \rightarrow \mathbb{R}^{n}$ be the map defined by $T(v)=\left(\begin{array}{c}\left\langle v, v_{1}\right\rangle \\ \vdots \\ \left\langle v, v_{n}\right\rangle\end{array}\right)$.
(a) Explain why T is linear over \mathbb{R}.
(b) Show that if $v \in \operatorname{Ker}(T)$, then $v \perp w$ for any w in the span of $\left\{v_{1}, \ldots, v_{n}\right\}$.
(c) Show that T is injective.
(d) Explain why the $n \times n$ matrix $\left(a_{i, j}\right)$ with $a_{i, j}=\left\langle v_{i}, v_{j}\right\rangle$ is invertible.

