Midterm exam Linear Algebra II Thursday 07/03/2024, 18:30–20:30

1 (9 = 1 + 2 + 2 + 4 pts)

subspaces

Let \mathcal{V} be a vector space over \mathbb{F} . Consider two subspaces \mathcal{U} and \mathcal{W} of \mathcal{V} .

- (a) Give an example to show that $\mathcal{U} \cup \mathcal{W}$ is in general not a subspace of \mathcal{V} .
- (b) Prove that $\mathcal{U} \cup \mathcal{W}$ is a subspace of \mathcal{V} if either $\mathcal{U} \subseteq \mathcal{W}$ or $\mathcal{W} \subseteq \mathcal{U}$.
- (c) Now assume that $\mathcal{U} \cup \mathcal{W}$ is a subspace of \mathcal{V} . Suppose that there exists a vector $u \in \mathcal{U}$ such that $u \notin \mathcal{W}$. Show that for any vector $w \in \mathcal{W}$, either $u + w \in \mathcal{U}$ or $u + w \in \mathcal{W}$.
- (d) Prove that if $\mathcal{U} \cup \mathcal{W}$ is a subspace of \mathcal{V} then either $\mathcal{U} \subseteq \mathcal{W}$ or $\mathcal{W} \subseteq \mathcal{U}$.

```
2 (9 = 3 + 3 + 3 \text{ pts})
```

linear operators

Consider the vector space P_2 of real polynomials of degree ≤ 2 .

(a) Define the function $T: P_2 \to P_2$ by

$$(T(p))(x) := x^2 p(\frac{1}{x}) + p''(x).$$

Prove that T is a linear operator.

- (b) Find a matrix representation of T with respect to the basis $(1, 1 + x, 1 2x + x^2)$.
- (c) Are the following maps linear operators on P_2 ? Motivate your answers.
 - $(R(p))(x) := xp(\frac{1}{x}) + p''(x).$
 - (S(p))(x) := p(p''(x)).

Consider the vector space V over \mathbb{C} consisting of all functions $f: \mathbb{Z}_{\geq 1} \to \mathbb{C}$. Here the sum of $f, g \in V$ is the function f + g defined by (f + g)(n) = f(n) + g(n), for all $n \in \mathbb{Z}_{\geq 1}$ and scalar multiplication (for $f \in V$ and $\lambda \in \mathbb{C}$) defined as $(\lambda f)(n) = \lambda f(n)$.

This exercise deals with the \mathbb{C} -subspace $W \subset V$ given by

$$W := \{ f \in V : f(n+3) = f(n+2) - f(n+1) + f(n) \text{ for all } n \in \mathbb{Z}_{\geq 1} \}.$$

- (a) Show that the function $h: \mathbb{Z}_{\geq 1} \to \mathbb{C}$ given by h(n) = 1 for any $n \geq 1$, is an element of W.
- (b) Explain why the three functions $n \mapsto 1$ and $n \mapsto i^n$ and $n \mapsto (-i)^n$ form a basis β for W over \mathbb{C} .
- (c) The linear map $S: W \to W$ is defined as follows: for any $f \in W$ we define S(f) to be the following function: it sends any $n \in \mathbb{Z}_{\geq 1}$ to f(n+1). Compute $_{\beta}[S]_{\beta}$, with β as in (b).
- (d) Take $g \in W$ defined as $g(n) = \begin{cases} 1 & \text{if } 4 \text{ divides } n \text{ and if } 4 \text{ divides } n+1, \\ 0 & \text{otherwise.} \end{cases}$ Then another basis for W is $\gamma = \{g, S(g), S(S(g))\}$. What is ${}_{\beta}[id_{W}]_{\gamma}$? Here S is the map from part (c) and β is the basis given in (b).

4
$$(9 = 2 + 2 + 2 + 3 \text{ pts})$$
 dimension, 1

dimension, norms and inner products

In this exercise, V is an inner product space over \mathbb{R} , with inner product of vectors $v, w \in V$ written as $\langle v, w \rangle$. We assume $0 \neq \dim V = n < \infty$ and we take a basis $\{v_1, \ldots, v_n\}$ for V

over \mathbb{R} . Let $T: V \to \mathbb{R}^n$ be the map defined by $T(v) = \begin{pmatrix} \langle v, v_1 \rangle \\ \vdots \\ \langle v, v_n \rangle \end{pmatrix}$.

- (a) Explain why T is linear over \mathbb{R} .
- (b) Show that if $v \in \text{Ker}(T)$, then $v \perp w$ for any w in the span of $\{v_1, \ldots, v_n\}$.
- (c) Show that T is injective.
- (d) Explain why the $n \times n$ matrix $(a_{i,j})$ with $a_{i,j} = \langle v_i, v_j \rangle$ is invertible.